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Hyperspectral Images

Several applications:

astronomy

agriculture

biomedical imaging

Whereas the human eye sees color of visible light in mostly three bands,
spectral imaging divides the spectrum into many more bands beyond the
visible.

The hyperspectral images can be modeled
as third-order tensors defined by two
indices for spatial variables and one
index for the spectral dimension.
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Tensors

A tensor X ∈ RI1×I2×...IN is a N-way array, a higher-order generalization of
vectors and matrices.

Anastasia Aidini Tensor modeling for hyperspectral data 3 / 34



Examples

Color image - 3D tensor:
spacial variables/color

Color video - 4D tensor:
spacial variables/color/time

fMRI (neuro-imaging) - 4D tensor:
spacial variables/depth/time
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Slices and Fibers

Slices are two-dimensional sections of a tensor, defined by fixing all
but two indices.

Fibers are defined by fixing every index but one.

Figure: Fibers and slices of the 3d-tensor X ∈ R7×5×8
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Tensor Unfoldings

The mode-k unfolded matrix X(k) ∈ RIk×
∏

i 6=k Ii corresponds to a matrix
with columns being the vectors obtained by fixing all indices of X except
the k-th index.

Figure: Illustration of unfolding a third-order tensor in terms of different modes.
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Tensor Rank

Every tensor can be written as a sum of rank-1 tensors

X ≈
R∑

r=1

a
(1)
r ◦ a(2)

r ◦ ... ◦ a(N)
r

The rank of a N-way tensor X is the smallest number R of rank-1
tensors needed to synthesize X.

No straightforward algorithm to determine the rank of a specific given
tensor (NP-hard problem).

The n-rank of an arbitrary Nth-order tensor X is the tuple of the
ranks of the N unfolding matrices.
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CP Decomposition

CANDECOMP/PARAFAC (CP) decomposition represents a N-order
tensor X ∈ RI1×..×IN as a linear combination of rank-1 tensors in the form

X =
R∑

r=1

λra
(1)
r ◦ a(2)

r ◦ ... ◦ a(N)
r

Figure: CP decomposition of the 3-order tensor X ∈ RI×J×K .

CP decomposition of a tensor is unique iff the R rank-1 terms in its
decomposition are unique.
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Tucker Decomposition

The Tucker decomposition decomposes a N-order tensor X ∈ RI1×..×IN

into a core tensor G ∈ RR1×R2×...×RN and multiple matrices A(n) ∈ RIn×Rn

which correspond to different core scaling along each mode in the form

X = G ×1 A
(1) ×2 A

(2) ×3 ...×N A(N)

Figure: Tucker decomposition of the 3-order tensor X ∈ RI1×I2×I3 .

The Tucker decomposition is in general not unique, that is, factor matrices
A(n) are rotation invariant.
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Compression of Hyperspectral Images

Huge amount of data is collected by hyperspectral sensors.

Compression is an important and challenging task for many
applications.

Figure: Remote sensing process.

Compression algorithms have to take into consideration the
redundancies in the spacial and spectral domains.
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Lossy and Lossless Compression

Lossless compression

reduces bits by identifying and eliminating statistical redundancy

no information is lost

limited compression ratio

Lossy compression

reduces bits by removing unnecessary or less important information

higher compression ratio
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Quantization

The process of mapping input values from a large set to output values in a
smaller set with a finite number of bits.

Integral part of data acquisition

Remote sensing scenario
Energy-limited systems

Data compression
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Huffman Coding

Huffman coding is commonly used for lossless data compression.

Huffman codes have the minimum average length (number of bits
needed) as compared to all other codes.

A Huffman code dictionary associates each data symbol with a
codeword.

A Huffman code is generated by calculating the probabilities of the
source symbols and the corresponding efficiency-indices so that the
resultant code is minimized in length.

No codeword in the dictionary is a prefix of any other codeword in the
dictionary.
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Missing measurements

communication failures → packets are lost

de-synchronization of sensors → different sampling instances

Snapshot mosaic (SSM) imaging sensors
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Problem

Recovery of the real-valued entries
of a tensor from a number of
quantized observations

No prior work examines the
interaction between quantization
and sampling in high-order
structured data
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The proposed method
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From tensor to matrices

M ∈ RI1×...×IN is the unknown, low-rank tensor.

M(n) ∈ RIn×
∏

j 6=n Ij the mode-n matricization (unfolding) of the tensor M

Optimization problem of matrix completion:

minimize Z(n)
rank(Z(n))

subject to PΩ(Z(n)) = PΩ(M(n))

where PΩ is a random sampling operator and Ω ⊆ {1, ., I1}× ..×{1, ., IN}
the sampling set. The rank function can be replaced by the nuclear norm
‖Z(n)‖∗, which is the sum of singular values of Z(n).
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Quantization model

The quantized measurement of the (i1, ..., iN)− th entry of M is

Yi1...iN = Q(Mi1...iN + εi1...iN ), (i1, ..., iN) ∈ Ω
εi1...iN ∼ Logistic(0, 1) or εi1...iN ∼N(0, 1)

where Q(·) : R→ F is a uniform scalar quantizer that maps a real number
to one of the P labels of F = {1, ...,P} (P = 2bits of quantization − 1), e.g.

Q(x) = p, if wp−1 < x ≤ wp, p ∈ F,

where {w0, ...,wP},w0 ≤ ... ≤ wP represents the set of quantization bin
boundaries of all measurements (we assume that is known a priori).
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Quantized Matrix Completion

We solve the following constrained optimization problem:

minimize M(n)
−

∑
j ,k:(j ,k)∈Ωn

log p(Y(n)j ,k
|M(n)j ,k

)

subject to ‖M(n)‖∗ ≤ λ

where p(Yi1..iN |Mi1..iN ) = Φ(Ui1..iN −Mi1..iN )− Φ(Li1..iN −Mi1..iN ), the

I1 × ...× IN tensors U and L contain the upper and lower bin boundaries
corresponding to the measurements.

The function Φ(x) corresponds to an inverse link function.

Logistic model: Φlog(x) = 1
1+e−x ,

Probit model: Φpro(x) =

∫ x

−∞
N(s | 0, 1) ds.
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Algorithm

Starting with the measurement matrix Z1
(n) = Y(n), the algorithm performs

two steps at each iteration l until convergence or the maximum number of
iterations:

1. Reduce the objective function:

Ẑl+1
(n) ← Zl

(n) − sl · ∇f ,

where sl = 1
L is the step-size (Llog = 1

4 , Lpro = 1) and

[∇f ]j ,k =


Φ
′
(L(n)j,k

−Z(n)j,k
)−Φ

′
(U(n)j,k

−Z(n)j,k
)

Φ(U(n)j,k
−Z(n)j,k

)−Φ(L(n)j,k
−Z(n)j,k

) if (j , k) ∈ Ωn

0 otherwise

2. Impose low-rankness on Z(n):

Zl+1
(n) ← U · diag(s) · VT , with s = Pλ(diag(S)),

where U · S · VT denotes the singular value decomposition (SVD) of
Ẑl+1

(n) and Pλ the projection onto the l1-ball with radius λ.
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Dynamic weights

The estimated tensors Zn is produced by folding each of the recovered
matrices Z(n) such that:

M ≈
N∑

n=1

an ·Zn

where

an =
[fitn(Z(n))]−1

N∑
i=1

[fiti (Z(i))]−1

, n = 1, ...,N

and the fitting error is given by

fitn(Z(n)) = ‖PΩ(foldn(Z(n))−Y)‖F .

The dynamic weights an can improve the recovery quality of the recovered
tensor.
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Experiments

Experimental results on publicly available hyperspectral Earth Observation
images taken from airbornes or satellites over

Indian Pines (14 bits per pixel)

Botswana (14 bits per pixel)

Pavia Center (13 bits per pixel)

Pavia University (13 bits per pixel)

Kennedy Space Center (16 bits per pixel)

To assess the recovery performance of our algorithm for different sampling
percentages, we use

The Normalized Mean Square Error - Lower is better

The peak signal to noise ratio (PSNR) in decibels - Higher is better
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Recovery error for each unfolding
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Figure: Normalized mean square error to each mode matricization on the
hyperspectral image over Indian Pines, using the probit model and (left) 1 bit and
(right) 6 bits for quantization.
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Models
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Figure: Normalized mean square error for each model, using 1 and 6 bits for
quantization on the hyperspectral image over Indian Pines.
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Bits of quantization
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Figure: PSNR for each number of bits of quantization, using the probit model on
the hyperspectral image over Indian Pines.

Anastasia Aidini Tensor modeling for hyperspectral data 25 / 34



Recovery error for each hyperspectral image
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Figure: PSNR for each hyperspectral image, using the probit model and 1 bit for
quantization.
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Reconstructed images
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Figure: The original (left) and the reconstructed images of Indian Pines for 20%
sampling percentage, using the probit model with 1 bit (middle) and 4 bits (right)
for quantization.
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Figure: The original (left) and the reconstructed images of Indian Pines for 20%
sampling percentage, using the probit model with 6 bits (middle) and 8 bits
(right) for quantization.
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Figure: The original (left) and the reconstructed image (right) of Pavia University
for 50% sampling percentage, using the probit model with 1 bit for quantization.
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Figure: The original (left) and the reconstructed image (right) of Pavia Center for
50% sampling percentage, using the probit model with 1 bit for quantization.
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Compressed Sensing

Goal: Recover a sparse signal x ∈ RN from measurements y ∈ RM with
M � N.

Problem: Random projection Φ ∈ RM×N not full rank (ill-posed inverse
problem).
Solution: Exploit the sparse/compressible geometry of acquired signal x

x̂ = argminx ‖x‖1 subject to Φx = y
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Compressed Sensing for Sparse Low-Rank Tensors 1/2

Sparse, low-rank tensor X ∈ RI×J×K .
Much smaller measurement tensor Y ∈ RL×M×N which is obtained by
multiplying (every slab of) X from the I -mode with UT , from the J-mode
with VT and from the K -mode with WT , where U is I × L, L ≤ I , V is
J ×M,M ≤ J and W is K × N,N ≤ K .

1Reference: Sidiropoulos, N. D., and Kyrillidis, A. (2012). Multi-way compressed
sensing for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11), 757-760.
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Compressed Sensing for Sparse Low-Rank Tensors 2/2

Recovery: Under some assumptions for the values of L,M,N, the original
factor loadings A,B,C (matrices with columns the vectors whose outer
products are the rank-one tensors that synthesize the tensor X) are almost
surely identifiable from the compressed data Y up to a common column
permutation and scaling.

It can be generalized to four and higher-way tensors.

1Reference: Sidiropoulos, N. D., and Kyrillidis, A. (2012). Multi-way compressed
sensing for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11), 757-760.
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